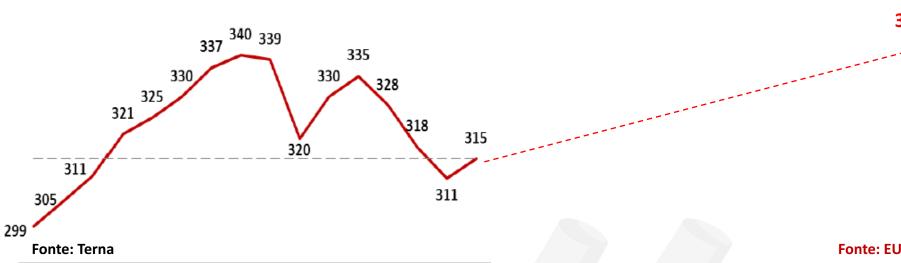
ANIE Energia e ANIE Rinnovabili I nuovi paradigmi per una generazione elettrica smart e sostenibile

Il sistema elettrico italiano di fronte alla sfida della decarbonizzazione M. Gallanti Milano, 22 Giugno 2016

La sfida della decarbonizzazione del sistema elettrico

- Il protocollo di Kyoto alla fine degli anni novanta,
- Mentre si sta ancora lavorando per conseguire gli obiettivi del pacchetto clima energia che l'UE si è posta per il 2020 («obiettivi 20-20-20»)
- l'UE sta definendo la policy UE per il clima e l'energia per il 2030 :
 - una riduzione almeno del 40% delle emissioni di gas a effetto serra (rispetto ai livelli del 1990)
 - Una quota di almeno il 27% di fonti rinnovabili (sui consumi finali lordi)
 - un miglioramento almeno del 27% dell'efficienza energetica
- Il vettore elettrico gioca un ruolo fondamentale nella decarbonizzazione, sia nella produzione che negli usi di energia


Evoluzione della domanda elettrica

Evoluzione dal 2000 al 2015

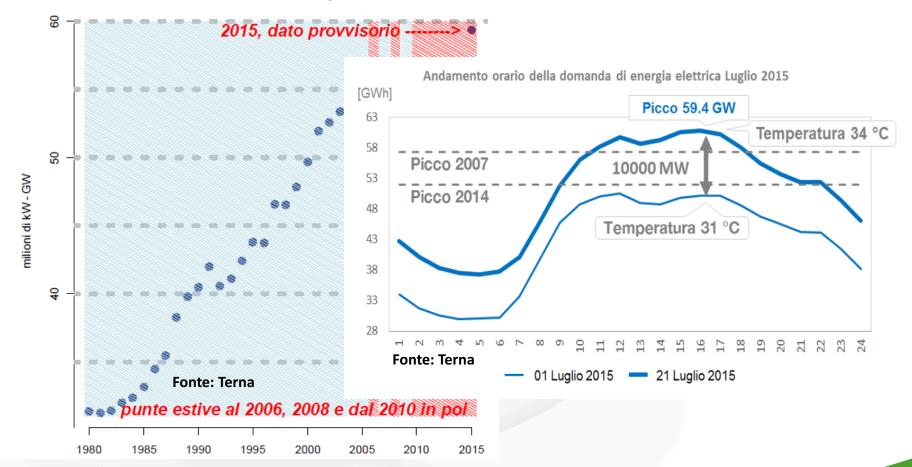
Evoluzione al 2030 (scenario tendenziale)

000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

- Fra 2008 e 2014 calo dei consumi finali di più di 20 TWh (-8,3%)
- L'industria ha perso quasi il 20% (consumi tornati al livello dei primi anni '90)
- Consumi di domestico e agricoltura stabili, terziario in aumento

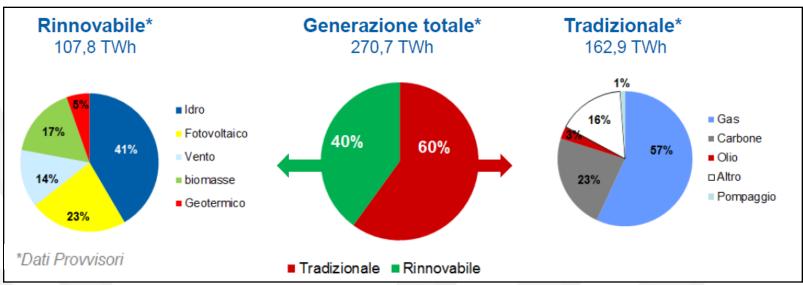
Anche in uno scenario tendenziale con una

- moderata ripresa economica la crescita dei consumi sarebbe limitata.
- Uno scenario di investimento in efficienza presenta forzanti di segno opposto:
 - Incremento per shift verso vettore elettrico
 - riduzione per maggiore efficienza


Ricerca sul Sistema Energetico - RSE S.p.A.

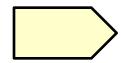
343

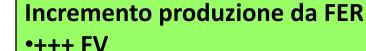
Riduzione della domanda elettrica in energia.... ma attenzione ai picchi di potenza


Carico massimo in Italia periodo 1980 – 2015 [2015: dato provvisorio]

Il mix produttivo del sistema elettrico italiano

Produzione elettrica 2015


Fonte: Terna



La decarbonizzazione del mix produttivo al 2030

Un possibile trend di sviluppo per decarbonizzare la produzione elettrica quali misure quali misure

- ... Fallas
- •++ Eolico
- •+ Bioene
- •≈ id trent moe

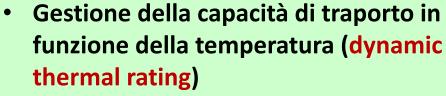
moelettrico

Kinche 210ne produzione da combustibili si attui? 210ne produzione da combustibili

- - Carbone
- Combustibili da processi industriali
- Derivati da petrolio

Che spazio avrà il gas naturale??

Il ruolo della rete elettrica


- La diffusione della generazione distribuita e, in generale, delle fonti rinnovabili non programmabili, richiede la disponibilità di una rete elettrica adeguata:
 - Incremento capacita di trasporto (in modo «hard» e «soft»)
 - Osservabilità e controllabilità delle risorse connesse alla rete
 - Gestione di flussi fortemente variabili nel tempo
- I nuovi modelli di micro-reti, distretti energetici, comunità di prosumers comunque non possono fare a meno della rete classica
 - Sicurezza ed economicità della fornitura
- I vincoli di rete condizionano il pieno sfruttamento delle rinnovabili e influenzano il mercato
 - Caso delle congestioni eolico lungo asse nord sud in Germania

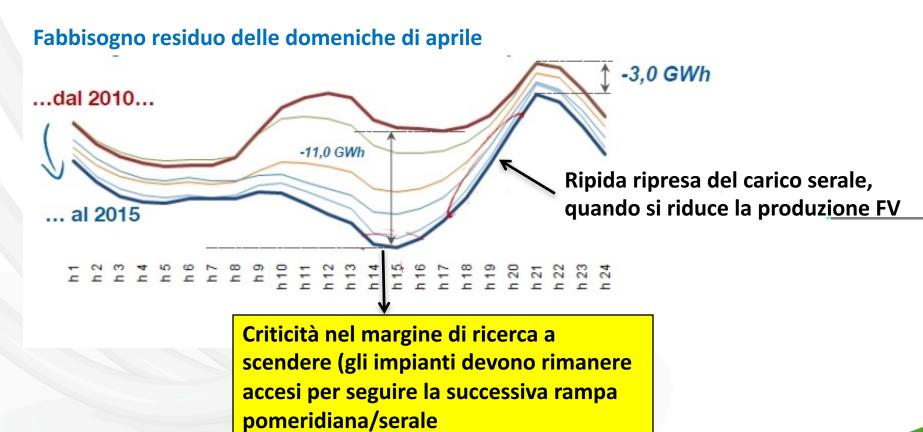
Quali sviluppi previsti per la rete elettrica?

Oltre alla diffusione e al potenziamento delle connessioni di rete («ferro e rame»)

è indispensabile il controllo della rete e delle risorse connesse («ICT e smartness»)

- Controllo della tensione nelle reti MT
- Infrastruttura ICT per il monitoraggio e il controllo delle utenze attive (generazione, carichi modulabili)

Effetti sulla rete dell'apertura del mercato verso gli aggregatori



- Le risorse sulle rete di distribuzione sono controllate dall'aggregatore, che vende i loro servizi al mercato.
- DSO: neutral market facilitator
- Il distributore tramite l'aggregatore può acquisire servizi dagli utenti connessi alla sua rete

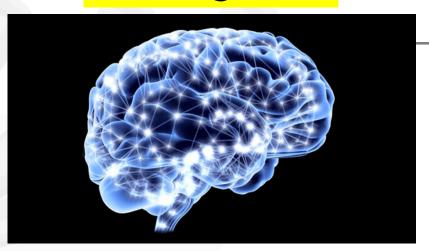
Nuove criticità nella gestione del sistema

 Elevate rampe della domanda residua vista dalle unità di generazione convenzionali, a partire da bassi valori nei quali i termoelettrici faticano a restare accesi

Nuove criticità nella gestione del sistema

- I rischi di overgeneration nei giorni di bassa domanda e elevata produzione FER richiedono tagli alle importazioni e, nei casi più critici, alle FER stesse per garantire la sicurezza del sistema
- Riduzione della quota delle unità di generazione convenzionali, uniche in grado di fornire riserva primaria, secondaria e terziaria
- Riduzione delle masse rotanti in giri e quindi dell'inerzia meccanica del sistema, con maggiori rischi per la stabilità
- Problemi sui profili di tensione
 - sulle reti di trasmissione, necessario mantenere numerosi impianti in servizio anche nelle ore di basso carico
 - sulle reti di distribuzione, nelle ore di alta produzione da rinnovabili

Come far fronte al futuro?



- L'ulteriore rilevante sviluppo atteso delle fonti rinnovabili, in particolare non programmabili, in uno scenario di moderata crescita della domanda, renderà sempre più evidenti le criticità discusse in precedenza
- Occorrerà quindi far evolvere il sistema elettrico verso una sempre maggiore:

Flessibilità

Intelligenza

Flessibilità & intelligenza

• La flessibilità nel sistema elettrico andrà sviluppata a tutti i livelli:

generazione convenzionale:
riduzione dei tempi di avviamento,
di permanenza in servizio ed
aumento della velocità di rampa
dei termoelettrici

domanda attiva: implementazione di soluzioni di Demand Side Management in tutti i settori (industriale, terziario, residenziale)

generazione non programmabile, che può comunque fornire servizi alla rete dei TG negli anni

2009

42

MW/min

2004

2015

Massimo gradiente testato

2015

Massimo gradiente rilasciato

2014

45

MW/min

2014

13

Gradiente TG fredda rilasciato

Impiego di sistemi di accumulo, anche di tipo distribuito (batterie), in un contesto regolatorio da consolidare

кісегса зиі эізіета Епегденсо - кэс э.р.А.

Sistemi di Accumulo

- I sistemi di accumulo sono lo strumento più flessibile a disposizione per la gestione del sistema elettrico
- La loro utilità appare chiara in un contesto di elevata penetrazione di fonti rinnovabili non programmabili
- Le prestazioni dinamiche dei sistemi di accumulo elettrochimici sono molto superiori a quelle degli impianti di generazione convenzionali
- Nonostante l'efficacia nello svolgere molteplici funzioni, i costi attuali li rendono economici solo in un limitato numero casi, come dimostrato dal recente studio RSE per ANIE
- Riduzioni di prezzo attesi nei prossimi anni

I SISTEMI DI ACCUMULO NEL SETTORE ELETTRICO

Flessibilità & intelligenza

- Domanda e generazione rinnovabile devono contribuire alla fornitura di servizi di dispacciamento, in quanto la sola generazione convenzionale potrebbe non essere più sufficiente
- L'intelligenza si sostanzia nella partecipazione attiva al sistema elettrico di una pluralità di soggetti al mercato elettrico, che concorrono alla realizzazione di un sistema sicuro, efficiente e sostenibili:
 - Consumatori, prosumers
 - Produttori convenzionali e da FER
 - Gli aggregatori e gli operatori di mercato
 - I gestori di rete (TSO, DSO)

L'evoluzione dei mercati elettrici

Recepimento codici Europei

- Armonizzazione dei mercati intraday
- Codice Capacity Allocation and Congestion Management (CACM)
- In predisposizione il codice per la messa in comune delle risorse di bilanciamento in predisposizione

Estensione dei partecipanti al mercato dei servizi

- Unita rilevanti ad oggi non abilitate (es. idro fluente, grosso eolico)
- Aggregazione di domanda
- Aggregazione generazione distribuita

Revisione mercato MSD

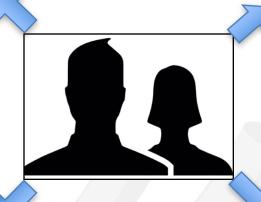
Coordinamento tra TSO e tra TSO e DSO

- Regole per la connessione e il (tele)controllo della generazione distribuita
- Osservabilità flussi tra rete di distribuzione e trasmissione
- Stato delle risorse distribuite della rete

Mercato della capacità

- Assicurarsi la disponibilità di capacità produttiva per assicurare adeguatezza del sistema elettrico nel Medio-Lungo Termine
- Caratterizzazione prodotto (flessibilità, area geografica

кісегса зиі эізіета Епегденсо - кэс э.р.А.


Una nuova prospettiva: l'utente al centro del sistema

Da consumer a
«prosumer».
Autoproduzione e
vendita al mercato
(energia dal basso)

Fruizione diretta e immediata dei dati di consumo:

- Smart Meters2G+dispositivo utente
- Dispositivi per la gestione in tempo reale dell'energia

Utente «attivo» in quanto disponibile a fornire servizi al sistema

 Direttamente o tramite soggetti «aggregatori»

Maggior consapevolezza nelle scelte energetiche.

- Scelta del profilo tariffario
- Efficientamento apparati di consumo
- Fuel switching

Conclusioni

- Lo scenario in atto presenta una discontinuità sostanziale rispetto a solo qualche anno fa
- Il forte sviluppo delle fonti rinnovabili non programmabili e la diminuzione dei consumi impongono una forte visione «di sistema»
- Interventi sulla struttura del mercato, per garantire l'adeguatezza e la sicurezza del sistema e per liberare nuove risorse di flessibilità
- Le scommesse tecnologiche per far fronte alle nuove esigenze riguardano
 ICT e accumulo
- La ricerca di sistema (il più piccolo degli oneri di sistema in bolletta)_____ potrebbe rivelarsi una risorsa molto importante per l'economia italiana
- Se adeguatamente supportata da governo e industria potrà dare slancio alla ripresa con l'esportazione delle soluzioni made in Italy

Grazie per l'attenzione

massimo.gallanti@rse-web.it

SITO WEB: www.rse-web.it