

Motori elettrici ad alto rendimento e inverter

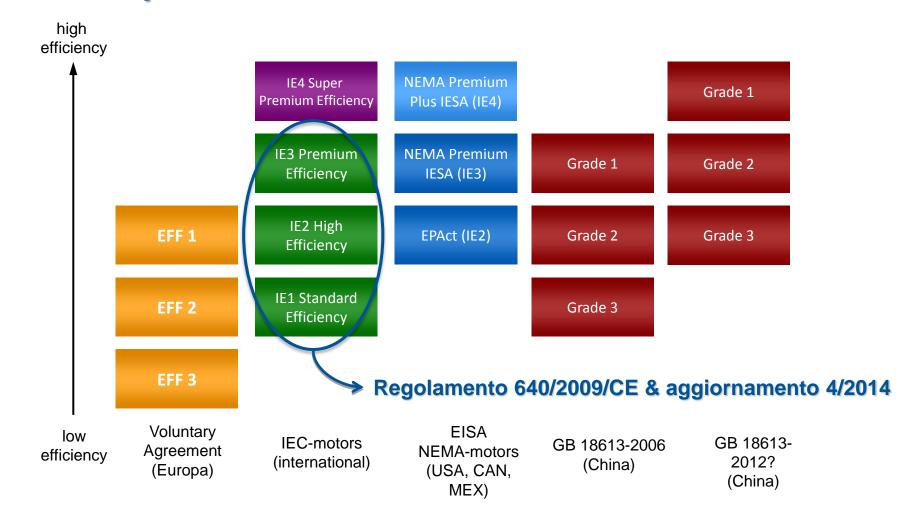
Ing. Gianluca Stanic ANIE Energia

Gruppo Macchine Rotanti e Azionamenti Bergamo, 28 Novembre 2019

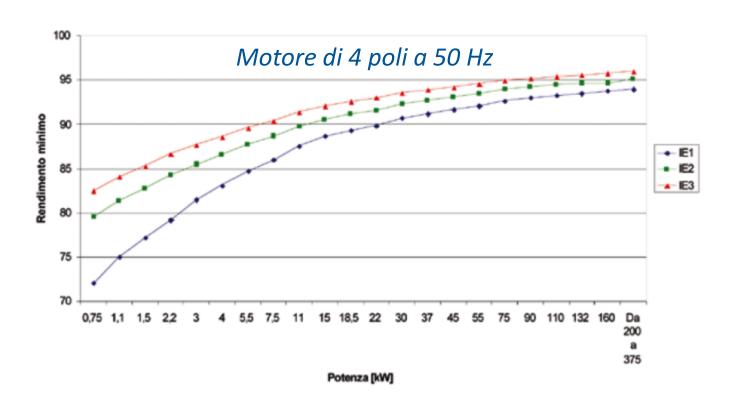
Contenuti

- Guida ANIE
- Classi di efficienza
- Regolamento 640/2009/CE & aggiornamento 4/2014
- Composizione dei materiali
- 🐫 Impatto del Regolamento e Previsioni
- Risparmio ed efficienza
- Esempi pratici
- Sorveglianza del mercato
- Nuovo Regolamento UE 1781/2019

Motori elettrici | Guida ANIE



Motori elettrici | Classi di efficienza



Motori elettrici | Classi di efficienza

Motori elettrici | Regolamento 640/2009/CE

Adottato il 22 luglio 2009, specifica i requisiti in materia di progettazione ecocompatibile per i motori elettrici e l'uso del controllo elettronico della velocità.

Questi requisiti si applicano anche quando questi dispositivi sono integrati in altri prodotti (ad esempio in macchine).

- Dal 16 Giugno 2011: i motori immessi sul mercato devono essere in classe di efficienza IE2;
- Dal 1 Gennaio 2015: i motori con potenza tra 7,5 e 375 kW devono essere in classe di efficienza IE3 oppure IE2 se accoppiati ad inverter;
- Dal 1 Gennaio 2017: i motori con potenza tra 0,75 e 375 kW devono essere in classe di efficienza IE3 oppure IE2 se accoppiati ad inverter.

Motori elettrici | Composizione dei materiali

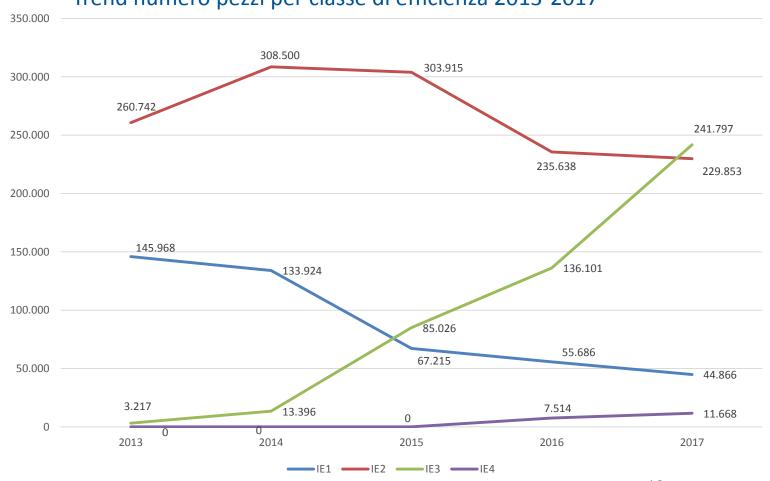
	Motori elettrici da 1,1 kW		
	IE1 – Kg/kW	IE2 – Kg/kW	IE3 – Kg/kW
Acciaio Elettrico	5,40	8,00	12,00
Altri acciai	1,50	1,60	1,70
Ghisa	2,50	2,50	2,50
Alluminio	1,70	2,00	2,40
Rame	1,24	1,90	3,00
Materiale Isolante	0,05	0,05	0,10
Materiale da Imballaggio	1,00	1,00	1,00
Resina di impregnazione	0,30	0,30	0,40
Vernice	0,10	0,10	0,15

Motori elettrici | Composizione dei materiali

	Motori elettrici da 11 kW		
	IE1 – Kg/kW	IE2 – Kg/kW	IE3 – Kg/kW
Acciaio Elettrico	3,60	4,80	6,50
Altri acciai	0,95	1,00	1,10
Ghisa	1,30	1,30	1,30
Alluminio	0,90	1,00	1,10
Rame	0,64	0,90	1,32
Materiale Isolante	0,02	0,02	0,04
Materiale da Imballaggio	0,90	0,90	0,90
Resina di impregnazione	0,10	0,15	0,25
Vernice	0,05	0,05	0,10

Motori elettrici | Composizione dei materiali

	Motori elettrici da 110 kW		
	IE1 – Kg/kW	IE2 – Kg/kW	IE3 – Kg/kW
Acciaio Elettrico	3,10	3,60	4,40
Altri acciai	0,67	0,70	0,75
Ghisa	3,00	3,00	3,00
Alluminio	0,18	0,20	1,22
Rame	0,54	0,60	0,74
Materiale Isolante	0,01	0,01	0,02
Materiale da Imballaggio	0,50	0,50	0,50
Resina di impregnazione	0,05	0,05	0,10
Vernice	0,01	0,01	0,02



Mercato Italia Motori elettrici BT

Trend numero pezzi per classe di efficienza 2013-2017

Fonte: statistica ANIE Energia Gruppo Motori BT; copertura del mercato pari a circa il 70%

Motori elettrici | risparmio ed efficienza

Motori bassa tensione in tutte le applicazioni!

Sostituzione motori guasti

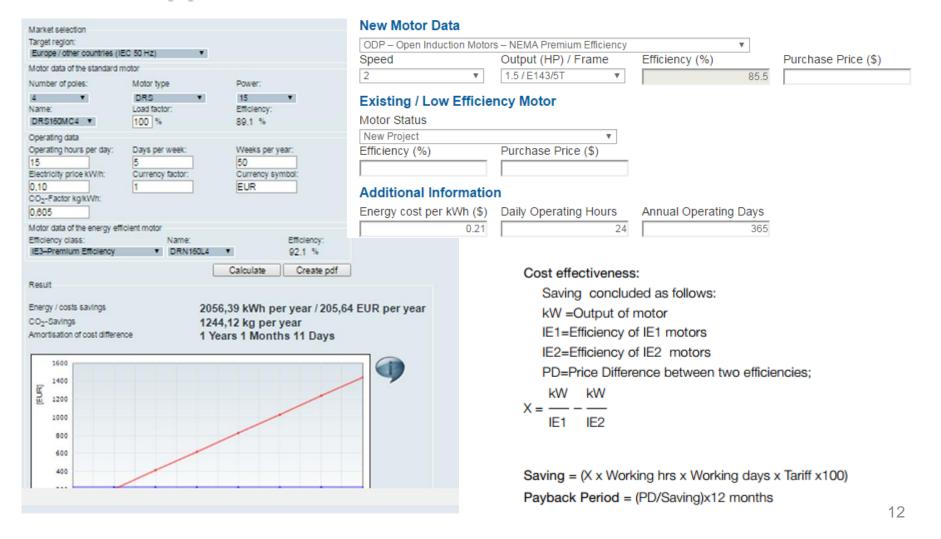
E' quasi sempre conveniente sostituire i vecchi motori guasti con un <u>nuovo motore ad alto</u> <u>rendimento</u>

risparmio energia 5 ÷ 15%; payback ~ 1 ÷ 2 anni

Sostituzione motori funzionanti

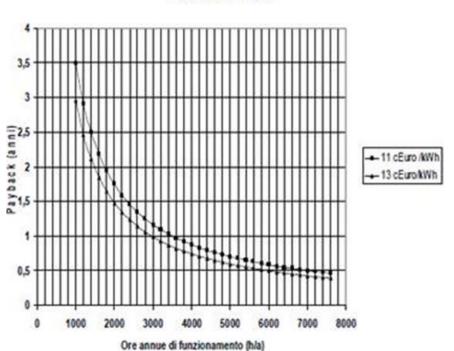
risparmio energia 5 ÷ 15%; payback ~ 1 ÷ 3 anni

Osservazioni


- Tempi di payback interessanti soprattutto oltre 3.000 h/anno di funzionamento
- Maggiori opportunità sotto i 110 ÷ 160 kW e su motori riavvolti
- Priorità a motori standard dove la sostituzione è più semplice

Costi/benefici: l'approccio dei costruttori

Motori elettrici | dalla tecnica alla finanza


$$Payback = \frac{(\text{Prezzo motore IE4 (3,2)} - Prezzo Motore IE1)}{((\text{KW} * \%uso * ore funzionamento * Costo kWh * $\left(\frac{1}{\text{Rend_IE1}} - \frac{1}{Rend_IE3(4,2,1)}\right)}$$$

Legenda:

- Payback in anni
- Potenza resa kW
- •%uso (coefficiente di carico p.u. *)
- •Ore di esercizio in un anno h
- Costo kWh
- •Rend il rendimento in p.u.

NOTA: incremento di peso e corrente di spunto Intercambiabilità (IE4)

^{*:} a rigore andrebbe corretto il rendimento a carichi ridotti

Motori elettrici | dalla tecnica alla finanza su un caso studio

- Caso: 30kW 4p 50Hz 400V Livelli di efficienza IE1 e IE3
- Assunzioni: esercizio a piena potenza 3500 h lavorate / anno; costo energia 0,15 €/kWh
- Rendimenti minimi IE1=0.907 (basso rendimento) IE3=0.936 (alto rendimento)
- Potenza assorbita nei due casi, kW: 33.07 (IE1) 32.05 (IE3)
- Costo energia (IE3)= 32.05x3500x0.15=€16,826.00 Costo energia (IE1)= 33.07x3500x0.15=€17,362.00 DELTA costo energia IE3 –IE1= €536 (3500 ore/anno)
- Risparmio energetico su un anno IE3 IE1 = 536 € (3500 ore / anno)
- Nota: si osservi il costo annuale dell'energia rispetto al costo del motore
- **Vantaggi indiretti**: temperature, rumore e vibrazioni ridotte con conseguente aumento di affidabilità e riduzione dei costi di manutenzione.

Caso 1 – Soffiante pre-trattamento

- **Era:** H 255 37kW 1500 rpm 400V **IE1** da rete (alto DX)
- E': motore IE4 (basso DX)

 Intercambiabile meccanicamente

 Rendimento garantito a carichi ridotti

 Collaudato e Certificato in Sala Prove

Progetto:

Gara Pubblica
Premiante l'efficienza energetica (da 4/4 a 1/4 carico)
Garanzie sulle prestazioni (incluso PF)

Risultati:

Payback in 6 mesi (8000h di esercizio/anno @ ¾ carico) assumendo un costo energia 0.192 €/kWh

Caso 2 – Centrale alta pressione per comando braccio gru

75kW 1500 rpm 690V 50Hz Soft Started IE3

Progetto:

Centrale oleodinamica ad alta pressione 100-300 bar per comando gru a bordo nave

Combinazione tensione e frequenza speciale, Avviatore statico.

Conforme ai regolamento navali (elettrico e meccanico – rollio e beccheggio statico e dinamico)

Risultati:

Payback rispetto IE1 in circa un anno (2000h di esercizio /anno @ 4/4 carico) assumendo un costo energia autoprodotta dagli impianti di bordo pari a circa 0.30 €/kWh

Caso 3 – Sollevamento impianto di trattamento rifiuti

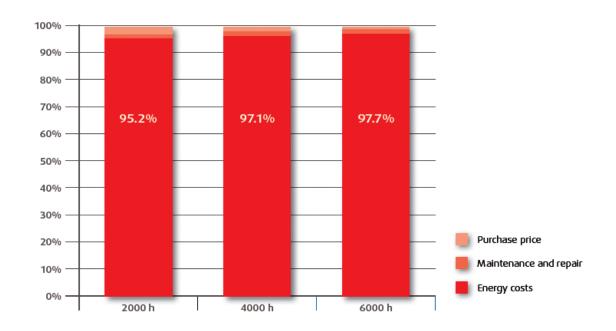
200kW 0-1500 rpm 0-50Hz VFD 690V IE4 Servoventilato

Progetto:

Terna di viti sollevamento materiale organico in impianto trattamento rifiuti a ciclo continuo. 3 motori IE4 comandati da inverter per funzionamento ottimale e modulabile del carico di lavoro incluso servizio a bassa velocità. Richiesta l'intercambiabilità con i motori esistenti.

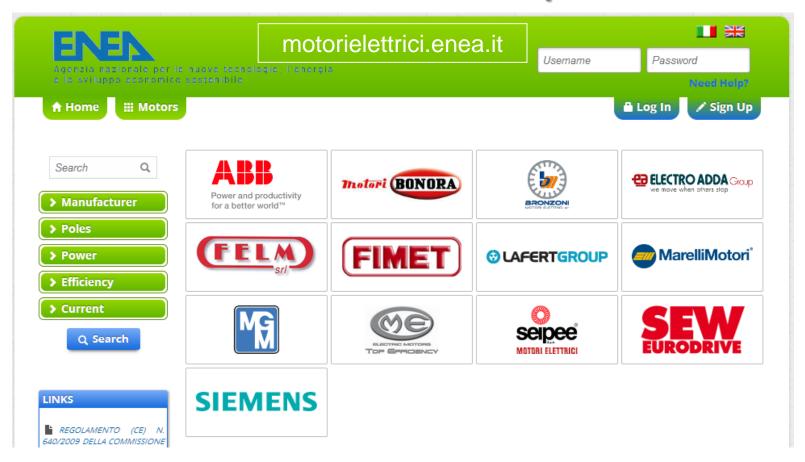
Risultati:

Payback rispetto IE1 in circa un anno (4000h di esercizio/anno per i 3 motori) assumendo un costo energia 0.192€/kWh



Costo del ciclo di vita di un motore elettrico (Fonte: ZVEI)

Operating hours per year	2000 h	4000 h	6000 h
Purchase price	3,8%	1,9%	1,3%
Maintenance and repair	1,0%	1,0%	1,0%
Energy costs	95,2%	97,1%	97,7%



Sorveglianza del mercato...tema ancora aperto

Regolamento CE | Prossimo Regolamento n. 1781/2019

Pubblicato sulla Gazzetta Ufficiale dell'Unione Europea il 25 ottobre. Prescrizioni principali:

Dal 1 luglio 2021:

- I motori trifase con potenza 0,75 kW \leq P \leq 1.000 kW, con 2/4/6/8 poli, ad eccezione dei motori a sicurezza aumentata Ex-eb, devono essere almeno in classe di efficienza IE3
- I motori trifase con potenza 0,12 kW ≤ P < 0,75 kW, con 2/4/6/8 poli, ad eccezione dei motori a sicurezza aumentata Ex-eb, devono essere almeno in classe di efficienza IE2
- le perdite di potenza dei variatori di velocità predisposti per funzionare con motori con 0,12 kW ≤ P ≤ 1.000 kW non superano le perdite di potenza massime corrispondenti al livello di efficienza IE2

Dal 1 luglio 2023:

- I motori a sicurezza aumentata Ex-eb con potenza 0,12 kW ≤ P ≤ 1.000 kW, con 2/4/6/8 poli devono essere almeno in classe di efficienza IE2
- I motori monofase con P ≥ 0,12 kW devono essere almeno in classe di efficienza IE2
- I motori trifase con potenza 75 kW ≤ P ≤ 200 kW, con 2/4/6 poli, ad eccezione dei motori auto-frenanti, dei motori a sicurezza aumentata Ex-eb e degli altri motori protetti dalle esplosioni, devono essere almeno in classe di efficienza IF4

Grazie per l'attenzione anienergia.anie.it

